首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
电工技术   1篇
化学工业   91篇
金属工艺   8篇
能源动力   41篇
轻工业   1篇
石油天然气   2篇
无线电   5篇
一般工业技术   18篇
冶金工业   3篇
自动化技术   5篇
  2023年   10篇
  2022年   7篇
  2021年   6篇
  2020年   27篇
  2019年   22篇
  2018年   1篇
  2017年   11篇
  2016年   9篇
  2015年   12篇
  2014年   18篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(22):32994-33002
Al2O3 aerogels are widely employed in heat insulation and flame retardancy because of their unique combination of low thermal conductivity and exceptional high-temperature stability. However, the mechanical properties of Al2O3 aerogel are poor, and the preparation time is considerably long. In this study, we present a simple and scalable approach to construct monolithic Pal/Al2O3 composite aerogels using solvothermal treatment instead of traditional solvent replacement, which remarkably shortened the preparation time. Subsequently, to obtain stable superhydrophobicity (θ > 152°), the Pal/Al2O3 aerogel was modified by gas-phase modification method. The obtained Pal/Al2O3 composite aerogels demonstrate the integrated properties of low density (0.078–0.106 g/cm3), low thermal conductivity (1000 °C, 0.143 W/(m·K)), good mechanical properties (Young's modulus, 1.6 MPa), and good heat resistance. The monolithic Pal/Al2O3 composite aerogels with improved mechanical performance and improved thermal stability can show great potential in the field of thermal insulation.  相似文献   
2.
Hu  Huikang  Kong  Weiguo  Jin  Weimin  Liu  Chunxia  Zhou  Shijian 《Catalysis Letters》2021,151(6):1556-1565
Catalysis Letters - For the noble-metal based catalysts, the metal dispersion and sinter resistance of the metal nanoparticles (NPs) are the most vital factors for their application in series...  相似文献   
3.
《Ceramics International》2020,46(13):21211-21215
A ternary solid solution of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi(Mg2/3Ta1/3)O3 (BNKT-xBMT) lead-free electroceramics was synthesized by a solid-state reactive sintering technique. The electrostrain, dielectric, and ferroelectric properties as well as the impedance characteristics and the microstructure were systematically assessed. With the increase of BMT, the BNKT-xBMT ceramics gradually transformed from non-ergodic relaxor phase to ergodic relaxor phase, manifested as the ferroelectric-to-relaxor temperature (TF-R) shifts towards below room temperature. Additionally, the ferroelectric hysteresis curves became pinched, and the strain curve changed from butterfly-shaped into sprout-shaped. At the ergodic relaxor composition of x = 0.04, a large electrostrain value (S = 0.4%; under an electric field of 60 kV/cm, d33* = 632 pm/V) was achieved, which is mainly attributed to the electric-field-induced transition from the ergodic relaxor phase to the ferroelectric phase.  相似文献   
4.
《Ceramics International》2020,46(14):22738-22744
(1-x) K0.5Na0.5NbO3 ~ xAl2O3 (x = 0, 0.2, 0.4, 0.6) ceramics were prepared via a traditional solid-state reaction method. The phase structure, micro-morphology, dielectric properties and electromagnetic properties of ceramic samples were studied and analyzed. Results indicate that all the samples are similar to K0.5Na0.5NbO3 (KNN) in perovskite structure. With the increase of Al2O3 content, the X-ray diffraction peaks move to a large angle region, suggesting the substitution of niobium ions by aluminium ions and the distortion of the KNN lattice with a new phase arising. With the increase of Al2O3 content the grain size reduces and the dielectric constant decrease, yielding to the decrease of the electromagnetic shielding performance of ceramic. When the x is 0.4, the minimum value of reflectivity of sample is −28 dB at the frequency of 11.6 GHz. It can be concluded that both the grain size and Al2O3 content can obviously affect the electromagnetic properties of ceramics, which can be easily turned through a multi-layer SiO2 heterojunction structure.  相似文献   
5.
Structural control and element doping are two popular strategies to produce semiconductors with surface enhanced Raman spectroscopy(SERS) properties. For TiO_2 based SERS substrates, maintaining a good crystallinity is critical to achieve excellent Raman scattering. At elevated temperatures(N600 °C), the phase transition from anatase to rutile TiO_2 could result in a poor SERS performance. In this work, we report the successful synthesis of TiO_2 nanowhiskers with excellent SERS properties. The enhancement factor, an index of SERS performance, is 4.96 × 10~6 for methylene blue molecule detecting, with a detection sensitivity around 10~(-7) mol·L~(-1).Characterizations, such as XRD, Raman, TEM, UV–vis and Zeta potential measurement, have been performed to decrypt structural and chemical characteristics of the newly synthesized TiO_2 nanowhiskers. The photo absorption onset of MB adsorbed TiO_2 nanowhiskers was similar to that of bare TiO_2 nanowhiskers. In addition, no new band was observed from the UV–vis of MB modified TiO_2 nanowhiskers. Both results suggest that the high enhancement factor cannot be explained by the charge-transfer mechanism. With the support of ab initio density functional theory calculations, we reveal that interfacial potassium is critical to maintain thermal stability of the anatase phase up to 900 °C. In addition, the deposition of potassium results in a negatively charged TiO_2 nanowhisker surface, which favors specific adsorption of methylene blue molecules and significantly improves SERS performance via the electrostatic adsorption effect.  相似文献   
6.
The incomplete polymerization of graphite carbon nitride (g-C3N4) due to the kinetic problems resulted in its high recombination rate of photo-generated electron-hole pairs. Hence, cyano-containing carbon nitride with coral-like morphology (CCCN) was prepared by the molten salt method with heptazine-based melem as precursor, which presented excellent separation rate of photo-generated electron-hole pairs. SEM exhibited that CCCN owned coral-like morphology which exposed ample active sites and enhanced the capture ability of visible light while FT-IR and XPS demonstrated that cyano groups appearing in coral-like carbon nitride enhanced the separation rate of photo-induced charge carriers. The synergistic effect of coral-like morphology and cyano groups endowed CCCN-15% with superior performance of both the photocatalytic H2 evolution (4207 μmol h?1 g?1) and Cr (Ⅵ) reduction (k = 0.059 min?1), approximately 16.8 and 6.0 times that of g-C3N4, which was comparable among the similar materials. Density functional theory calculation (DFT) revealed that cyano groups decreased the bandgap and strengthened the activation degree of reaction substrate, which enhanced the thermodynamic driving force and the interaction between catalyst and substrate. This work provided a potential strategy for both the renewable energy generation and environmental restoration.  相似文献   
7.
8.
Recent years, membrane separation technology has attracted significant research attention because of the efficient and environmentally friendly operation. The selection of suitable materials to improve the membrane selectivity, permeability and other properties has become a topic of vital research relevance. Two-dimensional (2D) materials, a novel family of multifunctional materials, are widely used in membrane separation due to their unique structure and properties. In this respect, as a novel 2D material, graphitic carbon nitride (g-C3N4) have found specific attention in membrane separation. This study reviews the application of carbon nitride in gas separation membranes, pervaporation membranes, nanofiltration membranes, reverse osmosis membranes, ion exchange membranes and catalytic membranes, along with describing the separation mechanisms.  相似文献   
9.
Nanoporous Cu with tunable pore size (20–50 nm) are synthesized through chemical dealloying of the Mg65Cu25Gd10 metallic glass in sulfuric acid solution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) demonstrated the formation of mixing structures consisting of amorphous matrix and fcc-Cu ligaments with nanoporous structure in the dealloyed samples. The nanoporous alloy obtained shows superior catalytic activity in degrading phenol-containing wastewater, e.g., the degradation rate increases by 2–4 times as compared to the un-dealloyed Mg-based metallic glass. It was also found that surface wettability plays an important role in degradation, which results in a better catalytic performance in the sample with coarser nanoporous structure although it has relatively less specific surface area as compared to the samples with finer pores. Finally, the mechanism for degradation of phenol is discussed.  相似文献   
10.
Cell adhesion can be a potential problem as well as a valuable tool for microbiological engineering. It can lead to biofouling, contamination of product and corrosion. On the other hand, cell adhesion is purposely employed in fermenters and bioreactors to influence reactor performance. This paper presents an overview of organo-functional silanes – their chemistry, properties, use, and the main laboratory experiments that can be of interest to the food and beverage industry. The purpose is to introduce and explore possibilities for using organo-silane combinations to enhance or reduce microbial adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号